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SUMMARY

Cranes are used worldwide for transportation and material handling in a variety of in-

dustries and facilities, including manufacturing industries, shipyards, and warehouses.

Safety and efficiency in crane operations are a concern, since these issues are closely

related to productivity. One of the reasons for crane-related accidents is mistakes by

the operator, some of which can be attributed to the limitations of the operator’s field

of view, depth perception, and knowledge of the workspace. These limitations are ex-

acerbated by the dynamic environment of the workspace. One possible solution to

these problems could be aiding the operator with a dynamic map of the workspace

that shows the position of obstacles within it. In this thesis, two methods for mapping

the crane workspace in near-realtime using computer vision are introduced. Several

computer vision algorithms are integrated, and new techniques are introduced to gen-

erate a machine-vision-based map. A QR code-based mapping algorithm is also formu-

lated. The algorithms can work independently. However, they can also be integrated,

and the results show that a combination of these two mapping techniques produce the

best results. The success of the pure machine-vision-based map and the QR code-based

map depend on successful segmentation of color regions and detection of the QR codes,

respectively. The combination of the two algorithms is a novel approach that ensures

maximum obstacle detection. The algorithms produce a workspace map that can help

the crane operator drive the crane more safely and efficiently.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

In overhead bridge cranes, like the one shown in Figure 1.1, a payload is suspended

from a trolley that moves along a bridge. The bridge itself can also move, enabling the

crane to serve a large area. Cranes have been used in construction and material han-

dling since antiquity and have made great contributions to the progress of civilization.

However, there are some risks in crane operation. One of the most dangerous risks in

crane operation is payload oscillation. When the crane is moved through its workspace,

the payload oscillates. If the oscillation is not controlled, the payload may collide with

objects or people, causing damage and injury. According to the Bureau of Labor statis-

tics, there were 78 crane-related fatal injuries per year from 2003 to 2005 [5]. These

incidents occurred either directly or indirectly because of the crane, or the operator.

According to the Crane Inspection and Certification Bureau, 90% of all crane accidents

occur due to human error [6]. Half of U.S. crane accidents that had injuries in 2009

resulted in fatalities.

Control techniques, including both feed-forward and feedback methods, have been in-

vented to eliminate crane payload oscillation. One of the most successful crane con-

trol techniques is input shaping [7–9], which shapes the command by convolving a se-

quence of impulses with crane operator input. The convolved signal is then used as

the reference command. This technique has proven useful for vibration reduction of

cranes [10–13].

Even though the control techniques used for vibration reduction greatly reduce the risk
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Figure 1.1: Overhead Crane [1]

of accidents from payload oscillation, there are still other kinds of risks associated with

crane operation. Mistakes by the operator resulting from poor knowledge of the entire

workspace or the operator’s vision being blocked by the payload or obstacles are just

two such risks. Either of these problems can lead to unsafe conditions and collisions

with workspace obstacles.

To prevent payload collision with obstacles, companies like CAMotion [14] have im-

plemented virtual boundaries around obstacles in crane workspace. However, obstacle

boundaries typically have to be manually entered either through a programming inter-

face or a series of offline obstacle-identification steps. Normal crane operations must be

stopped when these obstacle boundaries are being set up. This can work well for per-

manent obstacles, such as big machines, tanks and assembly lines. However, they are

not suitable for dynamic obstacles, such as fork lifts, loading and unloading zones, and

temporary machines.

3
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Another company, named KONECRANE [15], has implemented user-defined protected

areas. The crane automatically slows down and stops, and the operator is alarmed

by the user-interface when the crane goes near a protected area. However, these tech-

niques are not very useful for obstacles that change positions frequently, which is very

common in crane workspaces. A robust automated workspace mapping and obstacle-

identification method is obviously preferable. This thesis is the first step to an auto-

mated crane workspace mapping using machine-vision techniques.

In this thesis, two novel methods of crane workspace mapping using computer vision

is proposed. The first algorithm uses only one camera mounted on the crane trolley.

The map updates automatically as the crane moves through the workspace during nor-

mal operation, so the operator always has up-to-date knowledge of the workspace. The

map could be particularly helpful when the operator’s view is partially blocked by the

payload or obstacles, or a new operator starts working and finds obstacles in new po-

sitions. Using the automatically generated map, virtual boundaries could be defined

around the obstacles, to prevent payloads from running into them. These boundaries

could be updated every time the map updates. A second technique for mapping us-

ing Quick Response (QR) codes is introduced, which uses the same camera and can

either work individually or along with the first method. Together, these two methods

produce a complete two-dimensional map of the crane workspace showing the most re-

cently known positions of the obstacles.

1.2 Background and Literature Review

Machine-vision-based mapping or obstacle avoidance is not a totally new idea. Re-

search has been conducted to model the workspace in order to avoid crushing obstacles

during operations of heavy equipment by modeling the objects in 3D [16]. In addition,

vision systems have been used for mapping and navigation for mobile robots [17–19]

and developing augmented reality workspaces [20, 21]. Mapping and navigation were

4



www.manaraa.com

carried out using robots equipped with sophisticated sensors such as stereo-vision cam-

eras, RGB-D cameras, or a combination of multiple sensors. These techniques are quite

expensive and can be difficult to implement in overhead cranes, where navigation is not

a concern. In addition, a small number of sensors is preferred.

Simultaneous Localization and Mapping (SLAM) is a well established method for map-

ping an unknown environment or updating a map within a known environment by mo-

bile robots and autonomous vehicles while they keep track of their current location

[22, 23]. In the case of crane workspaces, the precise position of the crane is known,

so a simpler algorithm can be applied to map the workspace.

Machine vision systems have been implemented on tower cranes [24, 25] where a cam-

era is mounted on the crane facing downwards to get a bird’s eye view of the site. The

sole purpose was to help the operator see the workspace clearly. No mapping was at-

tempted in this research, so it is difficult for the operator to locate the obstacles while

driving the crane. Some researchers have used machine vision as a means of measuring

the crane hook location for feedback control [26], and some have conducted research

into crane control for obstacle avoidance [27, 28]. However, in this work, there was no

attempt to map the crane workspace.

A critical part of the machine vision technique for mapping is image segmentation.

The accuracy of the algorithm presented in this thesis heavily depends on how well

the obstacles are separated from the background. A simple method for image segmen-

tation is using thresholds. Some researchers worked on calculating thresholds automat-

ically from picture contents [29], using fuzzy sets [30], or Kalman-Filtering [31]. Data

clustering methods have also been applied in image segmentation [32, 33]. Edge-based

and region-based algorithms are two of the most common types of image segmenta-

tion techniques. Edge-based algorithms detect the sharp changes in an image by de-

5
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ciding whether pixels belong to an edge or not [34]. These algorithms work well with

simple and grayscale images with very few features [34], and therefore are not suitable

for segmenting a complex image taken of a crane workspace. Region-based algorithms

are pixel-based segmentation methods because they require initial seed points to be se-

lected [35]. This algorithms use data clustering to decide whether a neighboring pixel

belongs to the seeded region or not and keep iterating until all the pixels in the image

are examined. Region-based algorithms always give closed contours, which is impor-

tant for the algorithm presented in this research, because the obstacles are drawn in

the map based on the contours.

For region-based algorithms, the image should be properly seeded. Every seed leads

to a segmented region in the image. Researchers have tried to make the seeding auto-

mated [36, 37]; however, these methods separate one region from another. The mapping

technique presented in this thesis requires segmenting all the objects from one common

background. The decision of whether a region belongs to the background or not plays a

significant role in the success of the algorithm presented in this thesis.

One of the most-used seeded image segmentation algorithms is the watershed trans-

formation [38, 39], which is a combination of both edge-based and region-based algo-

rithms [40]. This algorithm requires markers in every region to be segmented. The

markers act as seeds and can be manually entered by the user. To make the water-

shed transformation unsupervised, the markers should be determined automatically.

Researchers have been working on creating automated markers using clustering and

morphological operations [41, 42]. However, these methods are application specific, and

none of them exactly apply to the segmentation required for crane workspace mapping.

The methods treat every region as a separate object, instead of segmenting all the ob-

jects from a common background.

6



www.manaraa.com

To measure the effectiveness of the machine-vision-based mapping, the efficiency of the

segmentation method used should be evaluated. Different kinds of segmentation eval-

uation methods are available [43–46]. The evaluation methods can be divided into two

categories: analytical and empirical [47]. The analytical methods measure the goodness

of an algorithm by analyzing the algorithm itself and its internal parameters. The em-

pirical methods, which are more suitable for this thesis, use test images as standards

and compare them with the segmented images to measure their accuracy.

Empirical methods can be further divided into two subcategories: empirical goodness

and empirical discrepancy methods [47]. Empirical goodness is the measure of percent-

age match between the segmented image and the reference image, and empirical dis-

crepancy is the measure of percentage discrepancy between the segmented image and

the reference image. These two methods help assess the mapping performance by com-

paring the similarity and discrepancy between the map and the workspace. Both are

used in this thesis.

Although the idea of workspace mapping using QR codes is new, the innovative and

intelligent use of QR codes is not. QR codes have been used for various purposes, such

as self localization of mobile robots [48], where the codes were used as landmarks and

contained a complete dataset, including geometrical position, normal vector, physical

size and shape. QR codes have also been used in developing robot indoor position and

orientation methods [49]. In this method, a camera was mounted on the robot facing

upward. The camera detects the QR codes attached to the ceiling, and calculates the

position and orientation of the QR code. From that information, the robot calculates

its absolute position and direction of heading. QR codes have also been used in devel-

oping guide robots [50] that use a similar approach. The guide robot follows a path

while detecting QR codes used as landmarks along the path. Another use of QR codes

is the design and implementation of augmented reality systems [51]. These techniques

7
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heavily depend on quick and accurate detection and recognition of QR codes.

Extensive research has been carried out for fast and accurate detection of QR codes

[52], image analysis for QR code recognition [53], detection of low resolution QR codes

using super resolution images generated from multiple low resolution images [54], QR

code recognition in snapshot taken by mobile phones [55, 56], and extraction of QR

codes from a non-uniform background [57]. Detection accuracy as high as 98% has

been achieved from low resolution images [54]. For fast detection of QR codes from

arbitrarily acquired image, the Viola-Jones algorithm has been used [58]. The fast de-

tection is made possible by focusing on the most promising regions of the image, and

classifying the patterns using rapid feature calculation. Thanks to these works, innova-

tive uses of QR codes are now possible; mapping crane workspaces is one of them.

In this thesis, image processing techniques such as blurring, stitching, template match-

ing, masking, thresholding, and watershed transformation are used to produce a com-

puter vision based map. For the QR code-based mapping algorithm, QR code encoding

and decoding techniques are used to encode and decode the QR codes, and edge de-

tection technique is used to calculate the orientation of the QR codes. The empirical

goodness and empirical discrepancy methods are applied to evaluate the performance

of each of the mapping algorithms, and the combination of the two algorithms.

1.3 Thesis Contributions

This thesis aims to improve the crane operations by providing the crane operator with

a near-realtime map of the entire workspace. A novel approach for mapping the workspace

using computer vision is introduced. Image processing algorithms including image

stitching, image thresholding, and watershed transformation are intelligently combined

to generate the final map. Older maps included in the final map help in knowing the

older positions the obstacles, which in turn helps in predicting the future positions of

8
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the obstacles. A novel approach of mapping the workspace with QR codes is also intro-

duced. The QR code based map can detect obstacles that are labeled with a QR code.

On the other hand, the color-based segmentation used in the pure machine-vision-

based mapping technique can detect any obstacle, provided that there is a good con-

trast between the foreground and the background. Therefore, it is preferred that the

two techniques be applied together when possible.

This thesis will enable some significant future research, including automatic obstacle

avoidance using computer vision. The map could be used to formulate an optimum

path-planning algorithm. It could also be extended to the third dimension to produce

a 3D map providing depth information, which would help decide the operator whether

the crane can be hoisted over the obstacles.

1.4 Structure of the Thesis

In the next chapter, the tools used in this research are briefly introduced.

In Chapter 3, Mapping Using Machine Vision, the machine-vision-based mapping pro-

cess is presented. The image acquisition method for mapping is discussed. Then, the

image processing steps necessary to produce the map are introduced, followed by the

image stitching algorithm. Next, the mapping process is explained in detail including

the decay function and memory factor, and, in conclusion, the effect of different param-

eters on the mapping performance is discussed with examples.

In Chapter 4, Mapping Using QR Codes, an algorithm using QR codes for mapping

the crane workspace is presented. The method of creating an obstacle database, the

encoding and decoding method of the QR codes, and finding the center and angular

orientation of the QR codes are discussed. Then the method of generating the map

from the data read from the QR codes is explained. Next, the combination of these

two maps is presented and compared with the QR code generated map and the machine-

9
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vision-based map. At the end of this thesis, the conclusions made from this thesis are

discussed.

10
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Chapter 2

TOOLS USED FOR MAPPING

This chapter is an overview of the tools used in this research. The hardware

used includes a small-scale crane, several types of cameras, and a variety

of obstacles for testing. The OpenCV library was used for image process-

ing, the python QR code package, qrcode 5.1, was used for generating QR

codes, and the open-source ZBAR library was used for decoding QR codes.

All code was written in the C++ programming language, except for the QR

code generation, which was written in Python.

2.1 Experimental Setup

Figure 2.1 shows the workspace of the small-scale crane used for the examples pre-

sented in this thesis. The workspace is 108×89.75×69.25 inches. It is controlled using

a Siemens PLC and driven by Siemens AC servomotors. For the mapping technique

presented in this thesis, a camera was mounted on the crane trolley.

2.2 Cameras Used

The color images used in this thesis were taken with a Logitech C920 webcam, a Nokia

Lumia 521, and an iPhone. The grayscale images in this thesis were taken with a Cognex

In-Sight 7000 camera. The lens used with this camera was a manually-focused Fujinon

lens with 9 mm focal length, f/1.4 to f/16 aperture, and a maximum 29◦52′ horizontal

and 22◦37′ vertical angle-of-view. Figure 2.2 shows a Cognex In-Sight 7000 camera.
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Trolley and Camera

ObstaclesExample 
Background

Figure 2.1: Small-Scale Crane Used in this Thesis

2.3 OpenCV

OpenCV is a widely used open-source computer vision library, written in C and C++.

It supports Windows, Mac OS, iOS, Android, and Linux [59]. This library can be used

in C, C++, Java, and Python. In this thesis, OpenCV 2.4 was used in most of the im-

age processing, including image stitching, template matching, image thresholding, his-

togram calculation, watershed transformation, and morphological operations. All the

code in this thesis was written in C++.

2.4 ZBAR

ZBAR is an open-source barcode reading library [60]. It can read barcodes from im-

ages, video streams, and sensors. ZBAR also supports reading and decoding QR codes.

In this thesis, the C++ interface of the ZBAR library was used to decode all of the QR

codes in the workspace.

12
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Figure 2.2: Cognex Insight 7000 [2]

2.5 QRCODE 5.1

qrcode 5.1 is a python package for QR code generation. To generate QR codes it uses

Python Imaging Library (PIL). While generating QR codes, the user can specify the

size, version, level of error correction, and box size, depending on the application and

amount of data to be encoded. All of the QR codes in this thesis were generated with

this module.

13
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Chapter 3

MAPPING USING MACHINE VISION

This chapter will explain the mapping algorithm using machine vision in

detail. This algorithm combines a number of machine vision tools including

stitching, template matching, and image segmentation to produce the final

map. The method of including older maps with the latest map to give an

idea of previous positions of the obstacles will be introduced. The mapping

performance will be evaluated, and the segmentation methods will be com-

pared. The results show that the mapping method is promising and can be

further developed for industrial use.

3.1 Overview of Mapping

Figure 3.1 shows a flowchart of the mapping process [61]. A camera mounted on the

crane trolley takes a picture each time it moves to a designated position. The camera

can not capture the entire workspace in a single image, so the individual images need

to be stitched together. The camera is mounted directly over the hook, so there is al-

ways the crane hook/payload in the image. The hook is located and masked before the

images are stitched together.

Simple thresholding or the watershed transformation algorithm for foreground-background

segmentation is applied for obstacle detection. For the watershed algorithm, a marker

image is created where portions of the foreground and background are identified through

a series of thresholding operations. The contours of the obstacles are extracted from

the segmented image, and polygonal curves are estimated from the contours using the
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Figure 3.1: Flowchart of the Mapping Algorithm

Douglas-Peucker algorithm [62]. Then the map is drawn. This map is overlapped with

the older maps, and a final map is generated. In the final map, the most recent posi-

tions of the obstacles are shown in red. The older positions are shown in yellow, the

intensity of which decreases exponentially with time and depends on number of maps
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Positions at TN (Current) 
   Overlapped PositionsPositions at TN-2

 Positions at TN-1

Figure 3.2: Crane Workspace Map

available.

An example map resulting from this process is shown in Figure 3.2 for the workspaces

shown in Figure 3.3. The time indicated in the figures is the time when the latest im-

age of each workspace was taken. The intensity of the yellow regions in the final map

indicates how recently there were objects at those locations. For example, a high in-

tensity of yellow indicates that an obstacle was at that location very recently. In Fig-

ure 3.2, TN−1 is more recent than TN−2, so the obstacles at TN−1 are represented by

a brighter shade of yellow than the obstacles at TN−2. The locations of past obstacles

are included with the intention of informing the operator of the possibility of obsta-

cles being there in the future. For example, a product loading area in a factory may

have been empty when the most recent map was generated, despite there often being

obstacles there. The following sections will discuss each part of this algorithm in more

detail.
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(a) Workspace at Time TN−2 (b) Workspace at Time TN−1 (c) Workspace at Time TN

Figure 3.3: Workspaces Used to Generate Map

3.2 Image Acquisition

In order for the mapping process to work automatically, the image acquisition method

also has to be automatic. The workspace is divided into segments, and a picture is

taken in each segment to cover the entire workspace. There are designated positions

with a buffered region around each. When the the crane trolley reaches one of these

buffered regions, the camera automatically takes a picture. Then, it waits until it moves

to another position, or for a certain period of time, depending on the frequency the

map is updated if it stays at the same position, before taking the next picture. This

automatic image acquisition works parallel to the normal crane operation. There is no

stoppage time. However, for the first-time operation, it is recommended that the crane

be moved through the entire workspace. Figure 3.4 shows the image acquisition pro-

cess.

3.3 Individual Image Processing

In order to eliminate noise in the images, the workspace images are first blurred. Blur-

ring smooths the images by reducing image noise and details. Gaussian blur and me-

dian blur are two of the most commonly used methods for blurring and are used in this

work. Figure 3.5 shows an example image before and after it has been blurred.

To separate the obstacles from the background, it is necessary to detect the background.

If the background color is known and uniform, a simple thresholding can be used to
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(a) Original Image (b) Blurred Image

Figure 3.5: Image Blurring

separate the background from the foreground. However, depending on the noise level

and lighting, the background of the workspace may vary significantly. Moreover, the

reflections of the lighting source and shadows of the objects can make it difficult to dis-

tinguish the obstacles from the background using simple thresholding.

A simple way to select the average background is calculating the image histogram for

all three channels of an RGB image, as shown in Figure 3.6. It is assumed in this work

that the background occupies a larger area than the obstacles. If this is the case, the

most frequent pixel value can be selected as the background value for each channel.

Figure 3.7 shows the background selection of the blue channel. The background of the

other two channels are selected similarly.

Because the camera is mounted directly over the hook, the crane hook/payload will

always be in the image. A simple solution is to cover that part of image with the cal-

culated background color, as shown in Figure 3.8. In this figure, the crane hook mask

is shown as semi-transparent to aid in understanding the algorithm. In practice, it is

opaque.

One way to locate the hook in the image is template matching [63], which is a tech-
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Figure 3.11: Individual Images to be Stitched

taneously solve for all the camera parameters. The images are then straightened and

blended together using multi-band blending [64] so that the output stitched image is

smooth.

Despite the advantages, there are some problems in using this stitching algorithm.

There is a distortion in the stitched image because the distance of the camera from

the objects is small. Also, it takes processing power and time to stitch multiple images

together.

3.5 Obstacle Detection

Some advanced methods for foreground-background segmentation are available, includ-

ing graph partitioning methods [68], region-based methods [69], and integration of mul-

tiple cues [70]. In this research, the watershed transformation, which is a combination

of edge-based and region-based algorithms is applied because it always provides closed

contours with a low level of noise and low computation time [71].
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Figure 3.12: Stitched Image

For obstacle detection, a marker image has to be created where a portion of the fore-

ground and background are marked. The foreground and the background of the image

are segmented by the watershed algorithm based on these marked areas. To create the

marker, the image is thresholded twice, through two three-channel scalars about the

previously-selected background value. For the first thresholding operation, the thresh-

old scalar range is larger, so that only the portions of the image that fall outside the

threshold range are sure to be the foreground and are marked as such. For the sec-

ond thresholding operation, the threshold range is smaller, so that only the parts of

the image that fall inside the threshold range are sure to be the background and are

marked as background. This is shown in Figure 3.13 for only blue channel. Using these

operations, a marker is created, and the aforementioned regions are labeled inside it,

as shown in Figure 3.14. Here, the background is marked in grey, the foreground is

marked in white, and the rest of the image is black.
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Figure 3.13: Background and Threshold Values Used for Marker Image Generation

Once the marker is determined, the watershed algorithm is applied to obtain the seg-

mented image. The contours of the obstacles are extracted from the segmented image.

Then, a polygonal curve is estimated using the Douglas-Peucker algorithm [62], and

the contours are drawn, as shown in Figure 3.15.

Another simple method for image segmentation is converting the stitched image into

grayscale, then thresholding it through an upper and a lower threshold value. The up-

per threshold is larger than the average background value, and the lower threshold is

smaller than the average background value. Thresholding through the upper and lower

thresholding values yield two segmented images, one in which objects brighter than

the background are segmented, and one in which objects darker than the background

value are segmented. Adding these two segmented images produce a image in which

all the obstacles are separated. Then, the contours can be extracted and a polygo-

nal curve can be drawn as before. Figure 3.16 shows the entire process for the same

workspace shown before. The problem with this method is finding the right threshold

values, and even if the right value is found, it is more sensitive to noise than the wa-

tershed transformation. Conservative threshold values can result in missed obstacles,
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and large values can result in noise in the map. However, for a particular workspace

condition, the threshold values are consistent. Therefore, these values can be calibrated

using an interface like the one shown in shown in Figure 3.17, and used for the particu-

lar workspace condition.

The resultant map from the threshold values found from this calibration is shown in

Figure 3.18. This map contains some noise. However, the process of generating it is

simpler than the segmentation algorithms and works in some conditions. It also works

with images of different colorspaces, after converting them into grayscale.

3.6 Overlapping Individual Maps

The mapping process presented in this thesis takes both the latest and older positions

of the obstacles into account. The older positions of obstacles can be used as an indi-

cator of the likelihood of there being an obstacle at that location in the future. Each

time a new picture is taken by the camera at a particular position, an individual map

is generated by stitching that picture with the most recent pictures at other positions.

Then a final map is created by overlapping the latest map with older individual maps.

The individual maps are overlapped in a way that the latest map is shown in red to in-

dicate certainty of finding an obstacle. Older maps are shown in yellow, the intensity of

which decreases with time when that maps were generated according to:

Ii = 100e−cm2ti/(t0−tl) (3.1)

where Ii represents percentage intensity of ith map, m is the number of maps available,

c is a scaling factor, ti represents time since ith map, and tl and t0 represent time since

the most recent map and the oldest map, respectively. The scaling factor depends on

the workspace conditions and the frequency with which the map is updated. For ex-

ample, if the map is updated very often, a higher value of c is chosen, so that there is
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(a) Obstacles Darker than the Background (b) Obstacles Brighter than the Background

(c) Combination of the Two Thresholds (d) Resultant Map

Figure 3.16: Grayscale Thresholding Process
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3.7 Memory Factor

If too many old maps are overlapped with the most recent map, the map becomes clut-

tered and too many obstacles at different points of time make the map confusing. Also,

maps that are too old do not give much indication of probable future locations of the

obstacles. To solve this problem, if an individual map is too old, it is discarded. A

memory factor determines when an individual map is discarded. The larger the mem-

ory factor is, the older an individual map can be and still be taken into account for

generating the final map. The memory factor is calculated using:

M =

⎧⎪⎪⎨
⎪⎪⎩

t0e−nc1 if n > 2

t0 if n ≤ 2
(3.2)

where M is the memory factor, t is the time since the oldest stitched image available,

n represents number of older stitched images available, and c1 is a scaling factor. If an

image is older than M , then it is forgotten. If the number of images available is less

than or equal to two, no image is forgotten. The memory factor is a function of both

number of images, n, and time since the oldest available image, t. For a particular t,

the memory factor reduces exponentially with number of images available. If a large

number of images are available, the memory factor is smaller, so that more images are

forgotten. If the number of images available is small, the memory factor becomes big-

ger, so that the older images are not forgotten. A maximum memory factor could be

set up to make sure that the maximum number of images considered is limited.

As an example, individual maps generated at times TN , TN−1, TN−2, where N is num-

ber of images, are shown in Figure 3.20. The resulting map is shown in Figure 3.21. In

this map, the red areas show the most recent positions of the obstacles. Medium-bright

yellow areas show next to the most recent positions, and the dark yellow areas show

the oldest positions of the obstacles. The overlapping areas between the older obstacle
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3.8 Performance Evaluation

Although this mapping technique is promising, there are some problems yet to be ad-

dressed. The background detection method described is based on the assumption that

the background area is larger than the total obstacle area, which may not always be

true. The thresholding values used for creating markers for the watershed algorithm

are also variable. However, the threshold values are fixed for a particular workspace in

a particular condition, and they can be calibrated. If there is an object that has the

same color as the background, it may go undetected by the segmentation algorithms.

Depending on the time of the day, the lighting condition changes in the workspace,

which makes adjustment necessary. The effect of various parameters on the mapping

performance are discussed in the following sections.

3.8.1 Effect of Memory Factor

Figure 3.22 shows the effect of memory factor on the obstacles detected as a percentage

of total workspace area. The total obstacle area, past obstacle areas, and the overlap

between past obstacle areas are shown. Obstacles occupy more area if the memory fac-

tor is bigger. In this example, when the memory factor is greater than TN−2, all three

individual maps are taken into account. The area occupied by obstacles is greater.

When the memory factor is less than TN−2 but greater than TN−1, the oldest of the

three individual maps is forgotten. In this case, both the total obstacle area and past

obstacle area are smaller. If the memory factor is less than TN−1, only the most recent

individual map is taken into account, the other two are forgotten. The total obstacle

area is the smallest in this case, and there is no past obstacle area shown in the map in

yellow. The effect of memory factor on the appearance of the map is shown in Figure

3.23.

As can be seen in (3.2), the memory factor depends on number of images available and

the scaling factor. The scaling factor is chosen based on how frequently the map up-
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Figure 3.26: Absolute Intensity as a Function of Normalized Time
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3.8.3 Comparison of Segmentation Methods

To evaluate the effectiveness of the proposed method, they are compared against a

manually-generated map, drawn directly on top of the stitched images, rather than

the measurements of the actual obtacles. As such it provides a method to compare

segmentation algorithms against one another, but is only an approximation of their

absolute accuracy. The results differ based on the contrast between background and

foreground and different camera parameters such as exposure, brightness and contrast.

However, for a particular camera and a particular set of workspaces, trends are found

when the two segmentation methods are compared.

The workspaces used for the comparison of the two segmentation techniques are shown

in Figure 3.27. These workspaces vary in background color, workspace size, and the

color, shape and size of the obstacles. Segmented images resulting from grayscale thresh-

olding and watershed transformation are compared against the manually-generated im-

ages for all of these eight workspaces. Workspace 1 is shown in Figure 3.28, along with

the manually-generated image used for comparison and the segmentation results.

Figure 3.29 compares the percentage match of pixels with the manually-generated map

for the grayscale thresholding method and the watershed transformation for different

workspaces. Every pixel of the map is compared with the corresponding pixel of the

manually-generated map. The figure shows that in most cases the watershed trans-

formation algorithm yields a more accurate map than the grayscale thresholding al-

gorithm. Figure 3.30 compares percentage obstacle pixels missed, that is the percent-

age of obstacle pixels in the manual map detected as background in the actual map.It

shows that the grayscale thresholding results in higher percentage of missed obsta-

cles than the watershed transformation. Figure 3.31 compares falsely detected obsta-

cle pixels, that is the percentage of foreground pixels in the generated map that are

background pixels in the manually drawn map. It shows that the watershed transfor-
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(a) Workspace 1 (b) Workspace 2

(c) Workspace 3 (d) Workspace 4

(e) Workspace 5 (f) Workspace 6

(g) Workspace 7 (h) Workspace 8

Figure 3.27: Workspaces Used for Evaluating Segmentation Performance
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Figure 3.31: Percentage of Falsely Detected Obstacles in Different Workspaces

cessfully detect as much as 96% of the obstacle area, and the watershed transformation

method is more robust when it comes to successfully detecting obstacles.
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Chapter 4

MAPPING USING QR CODES

This chapter will introduce another method for mapping the crane workspace,

which is based on QR codes. The algorithm requires the knowledge of the

dimensions of the obstacles likely to appear in the map. These obstacles are

labeled with QR codes, and a database is created to store the information

of the known obstacles. The camera mounted on the crane trolley takes pic-

tures of the workspace. The QR codes in the pictures taken by the camera

are read, and a map is generated by matching the identified QR codes to

the database. Unless all the obstacles in the workspace are labeled with a

QR code, this mapping technique shows only a fraction of the total num-

ber of obstacles. The QR code-based map is combined with the previously

described machine-vision-based map to ensure that maximum number of

obstacles are shown in the map.

4.1 QR Code Overview

The Quick Response code (QR code) is a kind of two dimensional barcode. Barcodes

are used all over the world for encoding information of the items onto which they are

affixed. The QR code was first developed for the automotive industry in Japan [72].

Now, it is very popular worldwide because of its greater data storage capacity and

quick readability. The datatypes QR codes support include binary, numeric, alphanu-

meric and kanji. Figure 4.1 shows an example QR code, encoded with the C.R.A.W.LAB

web address (http://www.ucs.louisiana.edu/˜jev9637/).
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Figure 4.1: QR code for the URL of CRAWLAB

4.1.1 Encoding and Decoding

There are several standards for encoding data in QR codes. A QR code consists of

black dots, called modules, on a white background. These modules create a unique pat-

tern for the data encoded in the QR codes. For decoding, an imaging device, typically

a camera, and a processor are used. The imaging device reads the QR codes, and the

processor extracts the data from the pattern present on the QR codes [73]. The pro-

cessor first locates the position blocks, shown in Figure 4.2, at the corners of the QR

coded image. It also locates a fourth square, known as an alignment block, near the

other corner to correct distortions. Then, the small modules are converted to binary

numbers and validated with an error correcting code.

4.1.2 Storage

The storage capacity of a QR code depends on the encoded datatype, version, and

error correction level. The possible datatypes are numeric, alphanumeric, binary and

kanji. There are 40 available versions of QR codes. Version 1 is a 21x21 matrix, which

can store the lowest amount of data. With each higher version, four additional rows
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database and the number of undetected obstacles can be counted. The database file

should be updated whenever an object is added or removed from the workspace.

Figure 4.4 shows the key steps of mapping using QR codes. In order for this algorithm

to work, first a database of all the known obstacles is created. Each obstacle listed in

the database is labeled with a QR code, the position of which with respect to the ob-

stacle is listed in the database.

The latest stitched image of the workspace is taken as the input. All the QR codes in

the stitched image are decoded, and the data are recorded. The recorded data includes

a keyword for the obstacle each QR code is attached to and the position and orien-

tation of that QR code. Next, for each QR code found in the image, the database is

searched for the matching obstacle using the keyword. When a match is found, the di-

mensions of the obstacle and its relative position from the QR code is read from the

database and from the obstacle height, the conversion factor from the physical units to

pixels is calculated.

Next, the obstacle position and orientation is calculated from the QR code position

and orientation, and using the conversion factor, the data are converted into pixel units.

Finally, the obstacle is drawn on the map. The process continues until all the obstacles

labeled with QR codes read from the stitched image are drawn. Figure 4.5 shows an

example workspace, a complete map is shown in Figure 4.6.

4.2.1 Creating Obstacle Database

Since the mapping technique using QR codes works only for known obstacles, a database

is necessary for the algorithm, which is created in text format where obstacles with

their types and dimensions are listed. The position of each QR code relative to the ob-

stacle onto which it is affixed is also listed. Taking precise measurements of the obsta-

cles and putting them in correct order is imperative for the algorithm to work properly.
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Figure 4.4: Flow Chart of Mapping Algorithm Using QR code

47



www.manaraa.com

Figure 4.5: Workspace with QR Code Labeled Obstacles

Figure 4.6: Resultant Map of the Workspace

Every obstacle in the database file is assigned with a code, which is also encoded in

the QR code of the corresponding obstacle. This code is the keyword for a QR code
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Table 4.2: Data Entry System for Circular Obstacles

tank1 rx radius height circle
c1 6 11 7

to match with the database file. For example, the keywords for circular obstacles are

c1, c2, ...,cn, and for rectangular obstacles, they are r1, r2, ...,rn. The database is up-

dated with every new obstacle added to the workspace. For every obstacle, the data

is listed in the following order: obstacle type (circle/rectangle/polygon), obstacle code

(example: c1, r3, p2 etc.), and dimensions.

For circular obstacles, the dimensions listed in the database are the relative distance of

the QR code from the center, the radius, and the height of the circular obstacle. Since

rectangular obstacles are common, and the labeling and data entry is easier than that

of polygonal obstacles, they are treated separately. Moreover, polygons close to rect-

angular shape can be simplified as rectangles. For rectangular obstacles, the dimen-

sions listed are the relative distance of the QR code from the lower left vertex, and the

length, width, and height of the obstacle. In the case of polygonal obstacles, the num-

ber of sides of the polygon is included in the database. The position of each corner rel-

ative to the QR code center is listed in polar coordinate, followed by the height of the

obstacle. All dimensions are specified in inches.

An example database entry for circular obstacles is shown in Table 4.2. Here, tank1 is

a circular object, and c1 is the unique keyword for tank1. The QR code is placed at

a radial distance of 6 units from the center, perpendicular to the radius, and the left

side facing the center, as shown in Figure 4.7. The tank has a radius of 11 units, and a

height of 7 units.

An example data entry for rectangular obstacles is shown in Table 4.3. Here, machine1

is a rectangular object, and r1 is the keyword for machine1. The QR code center is
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Input stitched 
image

Detect QR code 
with ZBAR

Decode QR code 
with ZBAR

Write data in file

Calculate angle 
and center

Any other QR 
code? YesNo

Terminate 
program

Figure 4.10: Flow Chart of the QR code Decoding Process

Figure 4.11: Example Image to be Decoded

QR codes. The decoding results are shown in Table 4.5.
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Table 4.5: Result of the Decoded QR Codes from the Example Image

c1 237◦ 820 256
r1 189◦ 501 326

Figure 4.12: Minimum Enclosing Rectangle for finding the QR code center

In Table 4.5, c1 is the keyword encoded in the QR code on tank1. The QR code’s po-

sition is (820, 256) pixels, and it is at an angle of 237 degrees relative to the positive

X-axis. Similarly, r1 is the keyword encoded in the QR code on machine1 and the QR

code’s position is (501, 326) pixels, and it is at an angle of 189 degrees relative to the

positive X-axis.

4.2.4 Calculating the Center of QR Codes

For every QR code detected, a minimum rectangle enclosing the QR code is calculated,

as shown in Figure 4.12. The four vertices of the rectangle are averaged to find the ap-

proximate center of the QR code.
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4.2.5 Calculating the Angle of QR Codes

To calculate the QR code angle, the position blocks are first detected. The canny edge

detection algorithm [76] is applied to detect all the edges of the image containing the

QR code. Then, a contour finding algorithm is used to detect all the contours with hi-

erarchy in the image. The position markers contain five nested contours, as shown in

Figure 4.13. This distinguishes the position markers from the other modules of the QR

code.

After the three position markers have been identified from the number of nested con-

tours they contain, the relative position of them with respect to each other is deter-

mined, and the markers are named as the top, right, and bottom markers. This can be

done by using a triangle ABC shown in Figure 4.14, formed by connecting the center

of each of the three contours of the three position blocks. The vertex not involved in

the largest side is out-lying, and it can be named as the top marker. In this case, C is

the top marker. In order determine the right and the bottom marker from the remain-

ing two, the slope of the straight line AB they form, and the distance of AB from C is

calculated.

* if slope and distance are positive, A is BOTTOM and B is RIGHT

* if slope in negative and distance is positive, A is RIGHT and B is BOTTOM

* if slope in positive and distance is negative, A is RIGHT and B is BOTTOM

* if slope and distance are negative, A is BOTTOM and B is RIGHT

Once the top, right, and bottom markers are determined, the angle of the straight line

connecting the top and right marker with respect to horizontal is the angle of the QR

code with respect to horizontal.
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Vertex A:

xa,ya = xo + l cosθ, yo + l sinθ (4.2)

Vertex B:

xb,yb = xo +hcos(θ +φ), yo +hsin(θ +φ) (4.3)

Vertex D:

xd,yd = xo −w sinθ, yo +w cosθ (4.4)

where,

r2 = r2
x + r2

y (4.5)

ψ = tan−1(ry/rx) (4.6)

h2 = l2 + l2 (4.7)

and

φ = tan−1(w/l) (4.8)

Since in polygonal obstacles, the vertices are defined in polar coordinates relative to

the QR code center, once the position of the QR code Center C(xo,yo) and the QR

code angle θ with respect to positive horizontal axis are read from the QR code data,

the vertices can be calculated from the following formula:

(x,y)i = xo + ri cos(ψi + θ), yo + ri sin(ψi + θ) (4.9)

where ri is the distance of ith vertex from the QR code center, and ψi is the angle of

the vertex with respect to the horizontal axis.

After all the vertices are found for the rectangle or polygon, it can be drawn by con-

necting the vertices with straight lines. Figure 4.18 shows an example workspace, a
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Figure 4.18: Workspace with QR Code Labeled Obstacles

Figure 4.19: Resultant Map of the Workspace

and less bright with increasing height. The contrast and relative size between the top

and the base give a sense of height of the obstacles.
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Figure 4.20: Workspace Map with Height Information

4.3 Combination with Machine-Vision-Based Mapping

The proposed QR-code-based method can be combined with the pure machine vision

method introduced in Chapter III. A simple technique to combine these two maps is

by drawing the QR code map directly over the machine-vision-based map. An example

of this technique is shown in Figure 4.21, where the white areas behind the obstacles

represent the machine-vision-based map. In this example, the QR code attached on

the rectangular obstacle was slightly misplaced, so it shows slight discrepancy from the

machine-vision-based map.

4.4 Performance Evaluation of QR Code-Based Mapping Algorithm

The performance of the mapping algorithm using QR codes was tested in different

workspaces. Stitched images of these workspaces are shown in Figure 4.22. These

workspaces have different backgrounds and different obstacle positions and spacing.

The obstacles used for testing are of polygonal, rectangular, and circular shapes. The
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Figure 4.21: Workspace Map with Two Mapping Techniques Together

QR code maps are compared against manual maps drawn from the measurements of

the workspaces. The coordinate of each vertex of each obstacle and the center in case

of circular obstacles from an origin is measured, and the data are converted from inches

to pixels. Then, the converted data are used to manually draw the top face of the ob-

stacles.

Using this data, the total percentage of matched pixels, percentage of matched fore-

ground pixels, percentage of missed obstacle pixels, and the percentage of falsely de-

tected obstacle pixels are calculated. The percentage match plot shows what percent-

age of pixels of the manually-generated map match with the corresponding pixels of

the QR code-based map, and the percentage foreground match plot shows what per-

centage of foreground pixels of the manually-generated map match with the corre-

sponding pixels of the QR code-based map. These two plots indicate how good the

map represents the actual workspace. The percentage missed obstacle pixels plot shows
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(a) Workspace 1 (b) Workspace 2 (c) Workspace 3

(d) Workspace 4 (e) Workspace 5 (f) Workspace 6

(g) Workspace 7

Figure 4.22: Workspaces Used for Evaluating QR Code Mapping Performance

what percentage of foreground pixels in the manually-generated map are detected as

a part of the background in the QR code-based map. The percentage falsely detected

obstacles plot shows what percentage of background pixels in the manually-generated

map are detected as a part of the foreground in the QR code-based map. Figure 4.23

shows an example workspace the corresponding manually-generated map and QR code

map to be compared. Only the obstacles labeled with QR codes are considered for

comparison. Some part of workspaces 6 and 7 are masked, because they are part of the
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(a) Example Workspace (b) Manually Drawn Map

(c) Map Using QR Code

Figure 4.23: Example Images for Evaluation

crane, not the workspace. The stitched image are of different sizes due to individual

image resolution and stitching distortion differences. However, since the performance

is evaluated as a percentage of total image pixels and total foreground pixels, the size

variation doesn’t affect the evaluation.

Figure 4.24 shows the percentage pixel match between the manually-generated map

from the measurements of the workspace and the maps generated using QR codes. The

results show as high as a 93% match between the manually-generated map and the QR

code-based map. Figure 4.25 shows the percentage match of obstacle pixels of the QR

65



www.manaraa.com



www.manaraa.com

viation of the stitched image from the actual workspaces. Due to the distortion, the

center and angle detection of the QR codes result in some errors, affecting the accuracy

of the map.

4.5 Comparison of Mapping Techniques

The pure machine vision map, the QR code-based map, and a combination of these

two maps are compared against the maps drawn from the physical measurements of

the obstacles for the same workspaces shown in Figure 4.22. Obstacles both with and

without QR codes are Considered for comparison in these workspaces. The percent-

age pixel match between actual map and manually-generated map is shown in Figure

4.28. The percentage match is close for the pure vision map, QR code-based map, and

combination map in most cases, and there is no particular trend. However, Figure 4.29

shows that the percentage foreground match is higher for the combination map than

the individual pure machine vision map and QR code map. The pure machine vision

map shows slightly better match than the QR code map. The reason for that is that

the obstacles without QR codes are not displayed in the QR code-based map, there-

fore only part of the actual workspace is shown in this map. This is also reflected on

Figure 4.30 which compares the percentage obstacle pixels missed for the three kinds

of map. This figure shows that the QR code-based map misses the most obstacle pix-

els. However, the previous section shows that the percentage missed pixels is reduced

if the obstacles not labeled with QR codes are not considered for comparison. This fig-

ure also shows that the combination map misses fewer pixels that belong to an obstacle

than the pure machine vision map and QR code-based map individually, which means

the combination map is more reliable. However, Figure 4.31 shows that the combina-

tion map detects highest number of pixels as part of an obstacle where in reality they

are not. It also shows that the pure vision map has the tendency of falsely detecting

pixels as obstacles than the QR code-based map.
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Figure 4.31: Percentage of Falsely Detected Obstacles in Generated Maps

4.6 Chapter Conclusion

In this chapter, an algorithm for mapping crane workspace using QR codes was intro-

duced. All the steps of the mapping algorithm, including labeling of the obstacles with

QR codes, creating database, encoding and decoding of the QR codes, angle and cen-

ter calculation, and drawing the map were explained. The height of the obstacles was

included in the drawn map. Then, the resultant map was integrated with the machine-

vision-based map. The mapping performance of the QR code-based map was compared

with the machine-vision-based map and the combination map. The efficiency of the

QR code-based mapping algorithm was found to be as high as 93%. However, precise

positioning of the QR codes and accurate measurements of the dimensions of the ob-

stacles are important for optimum performance. If the QR codes are precisely posi-

tioned and clearly readable, and the measurements are accurate, the QR code-based

mapping algorithm is preferable. However, it only works with QR code-labeled obsta-

cles of known dimensions and therefore should be accompanied by the machine-vision-

based mapping algorithm for a complete map of the crane workspace, unless all the
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obstacles in the workspaces are labeled with a QR code.
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Chapter 5

CONCLUSION

5.1 Summary and Contributions

In this thesis, first a novel approach of mapping the workspace of overhead cranes us-

ing pictures from a single camera was presented. Different image processing techniques

used to accomplish the mapping, including image stitching, template matching, im-

ages segmentation, histogram calculation were discussed. The idea of displaying the

older maps in the current map to show the previous obstacle positions as an indication

of the likelihood of finding the obstacle at those positions again in the future was in-

troduced. A memory factor was also introduced, which determines when to forget an

old map. Two segmentation algorithms for obstacle detection, simple grayscale thresh-

olding and watershed transform were compared. While the watershed transformation

is more successful in detecting obstacles, it is also computationally expensive and the

threshold values required to create the marker are difficult to determine.

In addition, a method of crane workspace mapping using QR codes was presented.

The method for creating database, the labeling of the obstacles with QR codes, the

encoding and decoding of the QR codes and the drawing of the obstacles on the map

were discussed. The height information was included with the map to give it a 3D ap-

pearance, and the combination of the two mapping techniques were discussed. Then

the performance of the mapping algorithm using QR codes was compared with the

machine-vision-based map for different workspaces using a manually-generated map.

Image segmentation methods have applications in a number of different fields, such as
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object detection and tracking. However, it has not been used in mapping crane workspaces

before. This thesis shows the enormous potential of image segmentation methods to be

used in mapping workspaces. Although image stitching techniques have been used be-

fore in aerial mapping, this is the first time the possibility of using image stitching to-

gether with image segmentation to formulate a crane workspace mapping algorithm has

been explored.

Although QR codes were initially invented for storing product information, other appli-

cations of them have been introduced, such as using them as landmarks for localization

of robots. This thesis presents an unique idea of using QR codes for mapping crane

workspaces. The results obtained from this thesis demonstrate that QR codes have the

potential of being widely used in mapping crane workspaces.

5.2 Future Work

The work in this thesis enables some advanced crane workspace mapping. More ad-

vanced image segmentation algorithms can be used to improve the mapping perfor-

mance. Significant computation power can be saved by replacing the stitching with

augmenting individual segmented images side-to-side. Instead of reading the QR codes

from the stitched image, they could be read directly by the camera, and the obstacles

could be drawn by locating the QR code in the camera coordinate combined with the

position of the camera itself in the world coordinate.

The obstacle positions obtained from the map can be used for automatic obstacle avoid-

ance by creating virtual boundaries around the obstacles, which in turn will make pos-

sible partial or fully-automated crane operation. This map can also be used to opti-

mize the path for the crane, which will increase productivity by reducing travel dis-

tance and time.
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ABSTRACT

Cranes are used worldwide for transportation and material handling in a variety of in-

dustries and facilities, including manufacturing industries, shipyards, and warehouses.

Safety and efficiency in crane operations are a concern, since these issues are closely

related to productivity. One of the reasons for crane-related accidents is mistakes by

the operator, some of which can be attributed to the limitations of the operator?s field

of view, depth perception, and knowledge of the workspace. These limitations are ex-

acerbated by the dynamic environment of the workspace. One possible solution to

these problems could be aiding the operator with a dynamic map of the workspace

that shows the position of obstacles within it. In this thesis, two methods for mapping

the crane workspace in near-realtime using computer vision are introduced. Several

computer vision algorithms are integrated, and new techniques are introduced to gen-

erate a machine-vision-based map. A QR code-based mapping algorithm is also formu-

lated. The algorithms can work independently. However, they can also be integrated,

and the results show that a combination of these two mapping techniques produce the

best results. The success of the pure machine-vision-based map and the QR code-based

map depend on successful segmentation of color regions and detection of the QR codes,

respectively. The combination of the two algorithms is a novel approach that ensures

maximum obstacle detection. The algorithms produce a workspace map that can help

the crane operator drive the crane more safely and efficiently.
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SUMMARY

Cranes are used worldwide for transportation and material handling in a variety of in-

dustries and facilities, including manufacturing industries, shipyards, and warehouses.

Safety and efficiency in crane operations are a concern, since these issues are closely

related to productivity. One of the reasons for crane-related accidents is mistakes by

the operator, some of which can be attributed to the limitations of the operator’s field

of view, depth perception, and knowledge of the workspace. These limitations are ex-

acerbated by the dynamic environment of the workspace. One possible solution to

these problems could be aiding the operator with a dynamic map of the workspace

that shows the position of obstacles within it. In this thesis, two methods for mapping

the crane workspace in near-realtime using computer vision are introduced. Several

computer vision algorithms are integrated, and new techniques are introduced to gen-

erate a machine-vision-based map. A QR code-based mapping algorithm is also formu-

lated. The algorithms can work independently. However, they can also be integrated,

and the results show that a combination of these two mapping techniques produce the

best results. The success of the pure machine-vision-based map and the QR code-based

map depend on successful segmentation of color regions and detection of the QR codes,

respectively. The combination of the two algorithms is a novel approach that ensures

maximum obstacle detection. The algorithms produce a workspace map that can help

the crane operator drive the crane more safely and efficiently.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

In overhead bridge cranes, like the one shown in Figure 1.1, a payload is suspended

from a trolley that moves along a bridge. The bridge itself can also move, enabling the

crane to serve a large area. Cranes have been used in construction and material han-

dling since antiquity and have made great contributions to the progress of civilization.

However, there are some risks in crane operation. One of the most dangerous risks in

crane operation is payload oscillation. When the crane is moved through its workspace,

the payload oscillates. If the oscillation is not controlled, the payload may collide with

objects or people, causing damage and injury. According to the Bureau of Labor statis-

tics, there were 78 crane-related fatal injuries per year from 2003 to 2005 [5]. These

incidents occurred either directly or indirectly because of the crane, or the operator.

According to the Crane Inspection and Certification Bureau, 90% of all crane accidents

occur due to human error [6]. Half of U.S. crane accidents that had injuries in 2009

resulted in fatalities.

Control techniques, including both feed-forward and feedback methods, have been in-

vented to eliminate crane payload oscillation. One of the most successful crane con-

trol techniques is input shaping [7–9], which shapes the command by convolving a se-

quence of impulses with crane operator input. The convolved signal is then used as

the reference command. This technique has proven useful for vibration reduction of

cranes [10–13].

Even though the control techniques used for vibration reduction greatly reduce the risk
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Figure 1.1: Overhead Crane [1]

of accidents from payload oscillation, there are still other kinds of risks associated with

crane operation. Mistakes by the operator resulting from poor knowledge of the entire

workspace or the operator’s vision being blocked by the payload or obstacles are just

two such risks. Either of these problems can lead to unsafe conditions and collisions

with workspace obstacles.

To prevent payload collision with obstacles, companies like CAMotion [14] have im-

plemented virtual boundaries around obstacles in crane workspace. However, obstacle

boundaries typically have to be manually entered either through a programming inter-

face or a series of offline obstacle-identification steps. Normal crane operations must be

stopped when these obstacle boundaries are being set up. This can work well for per-

manent obstacles, such as big machines, tanks and assembly lines. However, they are

not suitable for dynamic obstacles, such as fork lifts, loading and unloading zones, and

temporary machines.

3



www.manaraa.com

Another company, named KONECRANE [15], has implemented user-defined protected

areas. The crane automatically slows down and stops, and the operator is alarmed

by the user-interface when the crane goes near a protected area. However, these tech-

niques are not very useful for obstacles that change positions frequently, which is very

common in crane workspaces. A robust automated workspace mapping and obstacle-

identification method is obviously preferable. This thesis is the first step to an auto-

mated crane workspace mapping using machine-vision techniques.

In this thesis, two novel methods of crane workspace mapping using computer vision

is proposed. The first algorithm uses only one camera mounted on the crane trolley.

The map updates automatically as the crane moves through the workspace during nor-

mal operation, so the operator always has up-to-date knowledge of the workspace. The

map could be particularly helpful when the operator’s view is partially blocked by the

payload or obstacles, or a new operator starts working and finds obstacles in new po-

sitions. Using the automatically generated map, virtual boundaries could be defined

around the obstacles, to prevent payloads from running into them. These boundaries

could be updated every time the map updates. A second technique for mapping us-

ing Quick Response (QR) codes is introduced, which uses the same camera and can

either work individually or along with the first method. Together, these two methods

produce a complete two-dimensional map of the crane workspace showing the most re-

cently known positions of the obstacles.

1.2 Background and Literature Review

Machine-vision-based mapping or obstacle avoidance is not a totally new idea. Re-

search has been conducted to model the workspace in order to avoid crushing obstacles

during operations of heavy equipment by modeling the objects in 3D [16]. In addition,

vision systems have been used for mapping and navigation for mobile robots [17–19]

and developing augmented reality workspaces [20, 21]. Mapping and navigation were

4
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carried out using robots equipped with sophisticated sensors such as stereo-vision cam-

eras, RGB-D cameras, or a combination of multiple sensors. These techniques are quite

expensive and can be difficult to implement in overhead cranes, where navigation is not

a concern. In addition, a small number of sensors is preferred.

Simultaneous Localization and Mapping (SLAM) is a well established method for map-

ping an unknown environment or updating a map within a known environment by mo-

bile robots and autonomous vehicles while they keep track of their current location

[22, 23]. In the case of crane workspaces, the precise position of the crane is known,

so a simpler algorithm can be applied to map the workspace.

Machine vision systems have been implemented on tower cranes [24, 25] where a cam-

era is mounted on the crane facing downwards to get a bird’s eye view of the site. The

sole purpose was to help the operator see the workspace clearly. No mapping was at-

tempted in this research, so it is difficult for the operator to locate the obstacles while

driving the crane. Some researchers have used machine vision as a means of measuring

the crane hook location for feedback control [26], and some have conducted research

into crane control for obstacle avoidance [27, 28]. However, in this work, there was no

attempt to map the crane workspace.

A critical part of the machine vision technique for mapping is image segmentation.

The accuracy of the algorithm presented in this thesis heavily depends on how well

the obstacles are separated from the background. A simple method for image segmen-

tation is using thresholds. Some researchers worked on calculating thresholds automat-

ically from picture contents [29], using fuzzy sets [30], or Kalman-Filtering [31]. Data

clustering methods have also been applied in image segmentation [32, 33]. Edge-based

and region-based algorithms are two of the most common types of image segmenta-

tion techniques. Edge-based algorithms detect the sharp changes in an image by de-

5
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ciding whether pixels belong to an edge or not [34]. These algorithms work well with

simple and grayscale images with very few features [34], and therefore are not suitable

for segmenting a complex image taken of a crane workspace. Region-based algorithms

are pixel-based segmentation methods because they require initial seed points to be se-

lected [35]. This algorithms use data clustering to decide whether a neighboring pixel

belongs to the seeded region or not and keep iterating until all the pixels in the image

are examined. Region-based algorithms always give closed contours, which is impor-

tant for the algorithm presented in this research, because the obstacles are drawn in

the map based on the contours.

For region-based algorithms, the image should be properly seeded. Every seed leads

to a segmented region in the image. Researchers have tried to make the seeding auto-

mated [36, 37]; however, these methods separate one region from another. The mapping

technique presented in this thesis requires segmenting all the objects from one common

background. The decision of whether a region belongs to the background or not plays a

significant role in the success of the algorithm presented in this thesis.

One of the most-used seeded image segmentation algorithms is the watershed trans-

formation [38, 39], which is a combination of both edge-based and region-based algo-

rithms [40]. This algorithm requires markers in every region to be segmented. The

markers act as seeds and can be manually entered by the user. To make the water-

shed transformation unsupervised, the markers should be determined automatically.

Researchers have been working on creating automated markers using clustering and

morphological operations [41, 42]. However, these methods are application specific, and

none of them exactly apply to the segmentation required for crane workspace mapping.

The methods treat every region as a separate object, instead of segmenting all the ob-

jects from a common background.

6
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To measure the effectiveness of the machine-vision-based mapping, the efficiency of the

segmentation method used should be evaluated. Different kinds of segmentation eval-

uation methods are available [43–46]. The evaluation methods can be divided into two

categories: analytical and empirical [47]. The analytical methods measure the goodness

of an algorithm by analyzing the algorithm itself and its internal parameters. The em-

pirical methods, which are more suitable for this thesis, use test images as standards

and compare them with the segmented images to measure their accuracy.

Empirical methods can be further divided into two subcategories: empirical goodness

and empirical discrepancy methods [47]. Empirical goodness is the measure of percent-

age match between the segmented image and the reference image, and empirical dis-

crepancy is the measure of percentage discrepancy between the segmented image and

the reference image. These two methods help assess the mapping performance by com-

paring the similarity and discrepancy between the map and the workspace. Both are

used in this thesis.

Although the idea of workspace mapping using QR codes is new, the innovative and

intelligent use of QR codes is not. QR codes have been used for various purposes, such

as self localization of mobile robots [48], where the codes were used as landmarks and

contained a complete dataset, including geometrical position, normal vector, physical

size and shape. QR codes have also been used in developing robot indoor position and

orientation methods [49]. In this method, a camera was mounted on the robot facing

upward. The camera detects the QR codes attached to the ceiling, and calculates the

position and orientation of the QR code. From that information, the robot calculates

its absolute position and direction of heading. QR codes have also been used in devel-

oping guide robots [50] that use a similar approach. The guide robot follows a path

while detecting QR codes used as landmarks along the path. Another use of QR codes

is the design and implementation of augmented reality systems [51]. These techniques

7
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heavily depend on quick and accurate detection and recognition of QR codes.

Extensive research has been carried out for fast and accurate detection of QR codes

[52], image analysis for QR code recognition [53], detection of low resolution QR codes

using super resolution images generated from multiple low resolution images [54], QR

code recognition in snapshot taken by mobile phones [55, 56], and extraction of QR

codes from a non-uniform background [57]. Detection accuracy as high as 98% has

been achieved from low resolution images [54]. For fast detection of QR codes from

arbitrarily acquired image, the Viola-Jones algorithm has been used [58]. The fast de-

tection is made possible by focusing on the most promising regions of the image, and

classifying the patterns using rapid feature calculation. Thanks to these works, innova-

tive uses of QR codes are now possible; mapping crane workspaces is one of them.

In this thesis, image processing techniques such as blurring, stitching, template match-

ing, masking, thresholding, and watershed transformation are used to produce a com-

puter vision based map. For the QR code-based mapping algorithm, QR code encoding

and decoding techniques are used to encode and decode the QR codes, and edge de-

tection technique is used to calculate the orientation of the QR codes. The empirical

goodness and empirical discrepancy methods are applied to evaluate the performance

of each of the mapping algorithms, and the combination of the two algorithms.

1.3 Thesis Contributions

This thesis aims to improve the crane operations by providing the crane operator with

a near-realtime map of the entire workspace. A novel approach for mapping the workspace

using computer vision is introduced. Image processing algorithms including image

stitching, image thresholding, and watershed transformation are intelligently combined

to generate the final map. Older maps included in the final map help in knowing the

older positions the obstacles, which in turn helps in predicting the future positions of

8
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the obstacles. A novel approach of mapping the workspace with QR codes is also intro-

duced. The QR code based map can detect obstacles that are labeled with a QR code.

On the other hand, the color-based segmentation used in the pure machine-vision-

based mapping technique can detect any obstacle, provided that there is a good con-

trast between the foreground and the background. Therefore, it is preferred that the

two techniques be applied together when possible.

This thesis will enable some significant future research, including automatic obstacle

avoidance using computer vision. The map could be used to formulate an optimum

path-planning algorithm. It could also be extended to the third dimension to produce

a 3D map providing depth information, which would help decide the operator whether

the crane can be hoisted over the obstacles.

1.4 Structure of the Thesis

In the next chapter, the tools used in this research are briefly introduced.

In Chapter 3, Mapping Using Machine Vision, the machine-vision-based mapping pro-

cess is presented. The image acquisition method for mapping is discussed. Then, the

image processing steps necessary to produce the map are introduced, followed by the

image stitching algorithm. Next, the mapping process is explained in detail including

the decay function and memory factor, and, in conclusion, the effect of different param-

eters on the mapping performance is discussed with examples.

In Chapter 4, Mapping Using QR Codes, an algorithm using QR codes for mapping

the crane workspace is presented. The method of creating an obstacle database, the

encoding and decoding method of the QR codes, and finding the center and angular

orientation of the QR codes are discussed. Then the method of generating the map

from the data read from the QR codes is explained. Next, the combination of these

two maps is presented and compared with the QR code generated map and the machine-

9
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vision-based map. At the end of this thesis, the conclusions made from this thesis are

discussed.

10
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Chapter 2

TOOLS USED FOR MAPPING

This chapter is an overview of the tools used in this research. The hardware

used includes a small-scale crane, several types of cameras, and a variety

of obstacles for testing. The OpenCV library was used for image process-

ing, the python QR code package, qrcode 5.1, was used for generating QR

codes, and the open-source ZBAR library was used for decoding QR codes.

All code was written in the C++ programming language, except for the QR

code generation, which was written in Python.

2.1 Experimental Setup

Figure 2.1 shows the workspace of the small-scale crane used for the examples pre-

sented in this thesis. The workspace is 108×89.75×69.25 inches. It is controlled using

a Siemens PLC and driven by Siemens AC servomotors. For the mapping technique

presented in this thesis, a camera was mounted on the crane trolley.

2.2 Cameras Used

The color images used in this thesis were taken with a Logitech C920 webcam, a Nokia

Lumia 521, and an iPhone. The grayscale images in this thesis were taken with a Cognex

In-Sight 7000 camera. The lens used with this camera was a manually-focused Fujinon

lens with 9 mm focal length, f/1.4 to f/16 aperture, and a maximum 29◦52′ horizontal

and 22◦37′ vertical angle-of-view. Figure 2.2 shows a Cognex In-Sight 7000 camera.
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Trolley and Camera

ObstaclesExample 
Background

Figure 2.1: Small-Scale Crane Used in this Thesis

2.3 OpenCV

OpenCV is a widely used open-source computer vision library, written in C and C++.

It supports Windows, Mac OS, iOS, Android, and Linux [59]. This library can be used

in C, C++, Java, and Python. In this thesis, OpenCV 2.4 was used in most of the im-

age processing, including image stitching, template matching, image thresholding, his-

togram calculation, watershed transformation, and morphological operations. All the

code in this thesis was written in C++.

2.4 ZBAR

ZBAR is an open-source barcode reading library [60]. It can read barcodes from im-

ages, video streams, and sensors. ZBAR also supports reading and decoding QR codes.

In this thesis, the C++ interface of the ZBAR library was used to decode all of the QR

codes in the workspace.

12
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Figure 2.2: Cognex Insight 7000 [2]

2.5 QRCODE 5.1

qrcode 5.1 is a python package for QR code generation. To generate QR codes it uses

Python Imaging Library (PIL). While generating QR codes, the user can specify the

size, version, level of error correction, and box size, depending on the application and

amount of data to be encoded. All of the QR codes in this thesis were generated with

this module.

13
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Chapter 3

MAPPING USING MACHINE VISION

This chapter will explain the mapping algorithm using machine vision in

detail. This algorithm combines a number of machine vision tools including

stitching, template matching, and image segmentation to produce the final

map. The method of including older maps with the latest map to give an

idea of previous positions of the obstacles will be introduced. The mapping

performance will be evaluated, and the segmentation methods will be com-

pared. The results show that the mapping method is promising and can be

further developed for industrial use.

3.1 Overview of Mapping

Figure 3.1 shows a flowchart of the mapping process [61]. A camera mounted on the

crane trolley takes a picture each time it moves to a designated position. The camera

can not capture the entire workspace in a single image, so the individual images need

to be stitched together. The camera is mounted directly over the hook, so there is al-

ways the crane hook/payload in the image. The hook is located and masked before the

images are stitched together.

Simple thresholding or the watershed transformation algorithm for foreground-background

segmentation is applied for obstacle detection. For the watershed algorithm, a marker

image is created where portions of the foreground and background are identified through

a series of thresholding operations. The contours of the obstacles are extracted from

the segmented image, and polygonal curves are estimated from the contours using the
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Figure 3.1: Flowchart of the Mapping Algorithm

Douglas-Peucker algorithm [62]. Then the map is drawn. This map is overlapped with

the older maps, and a final map is generated. In the final map, the most recent posi-

tions of the obstacles are shown in red. The older positions are shown in yellow, the

intensity of which decreases exponentially with time and depends on number of maps

15
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Positions at TN (Current) 
   Overlapped PositionsPositions at TN-2

 Positions at TN-1

Figure 3.2: Crane Workspace Map

available.

An example map resulting from this process is shown in Figure 3.2 for the workspaces

shown in Figure 3.3. The time indicated in the figures is the time when the latest im-

age of each workspace was taken. The intensity of the yellow regions in the final map

indicates how recently there were objects at those locations. For example, a high in-

tensity of yellow indicates that an obstacle was at that location very recently. In Fig-

ure 3.2, TN−1 is more recent than TN−2, so the obstacles at TN−1 are represented by

a brighter shade of yellow than the obstacles at TN−2. The locations of past obstacles

are included with the intention of informing the operator of the possibility of obsta-

cles being there in the future. For example, a product loading area in a factory may

have been empty when the most recent map was generated, despite there often being

obstacles there. The following sections will discuss each part of this algorithm in more

detail.
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(a) Workspace at Time TN−2 (b) Workspace at Time TN−1 (c) Workspace at Time TN

Figure 3.3: Workspaces Used to Generate Map

3.2 Image Acquisition

In order for the mapping process to work automatically, the image acquisition method

also has to be automatic. The workspace is divided into segments, and a picture is

taken in each segment to cover the entire workspace. There are designated positions

with a buffered region around each. When the the crane trolley reaches one of these

buffered regions, the camera automatically takes a picture. Then, it waits until it moves

to another position, or for a certain period of time, depending on the frequency the

map is updated if it stays at the same position, before taking the next picture. This

automatic image acquisition works parallel to the normal crane operation. There is no

stoppage time. However, for the first-time operation, it is recommended that the crane

be moved through the entire workspace. Figure 3.4 shows the image acquisition pro-

cess.

3.3 Individual Image Processing

In order to eliminate noise in the images, the workspace images are first blurred. Blur-

ring smooths the images by reducing image noise and details. Gaussian blur and me-

dian blur are two of the most commonly used methods for blurring and are used in this

work. Figure 3.5 shows an example image before and after it has been blurred.

To separate the obstacles from the background, it is necessary to detect the background.

If the background color is known and uniform, a simple thresholding can be used to
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(a) Original Image (b) Blurred Image

Figure 3.5: Image Blurring

separate the background from the foreground. However, depending on the noise level

and lighting, the background of the workspace may vary significantly. Moreover, the

reflections of the lighting source and shadows of the objects can make it difficult to dis-

tinguish the obstacles from the background using simple thresholding.

A simple way to select the average background is calculating the image histogram for

all three channels of an RGB image, as shown in Figure 3.6. It is assumed in this work

that the background occupies a larger area than the obstacles. If this is the case, the

most frequent pixel value can be selected as the background value for each channel.

Figure 3.7 shows the background selection of the blue channel. The background of the

other two channels are selected similarly.

Because the camera is mounted directly over the hook, the crane hook/payload will

always be in the image. A simple solution is to cover that part of image with the cal-

culated background color, as shown in Figure 3.8. In this figure, the crane hook mask

is shown as semi-transparent to aid in understanding the algorithm. In practice, it is

opaque.

One way to locate the hook in the image is template matching [63], which is a tech-
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Figure 3.11: Individual Images to be Stitched

taneously solve for all the camera parameters. The images are then straightened and

blended together using multi-band blending [64] so that the output stitched image is

smooth.

Despite the advantages, there are some problems in using this stitching algorithm.

There is a distortion in the stitched image because the distance of the camera from

the objects is small. Also, it takes processing power and time to stitch multiple images

together.

3.5 Obstacle Detection

Some advanced methods for foreground-background segmentation are available, includ-

ing graph partitioning methods [68], region-based methods [69], and integration of mul-

tiple cues [70]. In this research, the watershed transformation, which is a combination

of edge-based and region-based algorithms is applied because it always provides closed

contours with a low level of noise and low computation time [71].
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Figure 3.12: Stitched Image

For obstacle detection, a marker image has to be created where a portion of the fore-

ground and background are marked. The foreground and the background of the image

are segmented by the watershed algorithm based on these marked areas. To create the

marker, the image is thresholded twice, through two three-channel scalars about the

previously-selected background value. For the first thresholding operation, the thresh-

old scalar range is larger, so that only the portions of the image that fall outside the

threshold range are sure to be the foreground and are marked as such. For the sec-

ond thresholding operation, the threshold range is smaller, so that only the parts of

the image that fall inside the threshold range are sure to be the background and are

marked as background. This is shown in Figure 3.13 for only blue channel. Using these

operations, a marker is created, and the aforementioned regions are labeled inside it,

as shown in Figure 3.14. Here, the background is marked in grey, the foreground is

marked in white, and the rest of the image is black.
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Figure 3.13: Background and Threshold Values Used for Marker Image Generation

Once the marker is determined, the watershed algorithm is applied to obtain the seg-

mented image. The contours of the obstacles are extracted from the segmented image.

Then, a polygonal curve is estimated using the Douglas-Peucker algorithm [62], and

the contours are drawn, as shown in Figure 3.15.

Another simple method for image segmentation is converting the stitched image into

grayscale, then thresholding it through an upper and a lower threshold value. The up-

per threshold is larger than the average background value, and the lower threshold is

smaller than the average background value. Thresholding through the upper and lower

thresholding values yield two segmented images, one in which objects brighter than

the background are segmented, and one in which objects darker than the background

value are segmented. Adding these two segmented images produce a image in which

all the obstacles are separated. Then, the contours can be extracted and a polygo-

nal curve can be drawn as before. Figure 3.16 shows the entire process for the same

workspace shown before. The problem with this method is finding the right threshold

values, and even if the right value is found, it is more sensitive to noise than the wa-

tershed transformation. Conservative threshold values can result in missed obstacles,
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and large values can result in noise in the map. However, for a particular workspace

condition, the threshold values are consistent. Therefore, these values can be calibrated

using an interface like the one shown in shown in Figure 3.17, and used for the particu-

lar workspace condition.

The resultant map from the threshold values found from this calibration is shown in

Figure 3.18. This map contains some noise. However, the process of generating it is

simpler than the segmentation algorithms and works in some conditions. It also works

with images of different colorspaces, after converting them into grayscale.

3.6 Overlapping Individual Maps

The mapping process presented in this thesis takes both the latest and older positions

of the obstacles into account. The older positions of obstacles can be used as an indi-

cator of the likelihood of there being an obstacle at that location in the future. Each

time a new picture is taken by the camera at a particular position, an individual map

is generated by stitching that picture with the most recent pictures at other positions.

Then a final map is created by overlapping the latest map with older individual maps.

The individual maps are overlapped in a way that the latest map is shown in red to in-

dicate certainty of finding an obstacle. Older maps are shown in yellow, the intensity of

which decreases with time when that maps were generated according to:

Ii = 100e−cm2ti/(t0−tl) (3.1)

where Ii represents percentage intensity of ith map, m is the number of maps available,

c is a scaling factor, ti represents time since ith map, and tl and t0 represent time since

the most recent map and the oldest map, respectively. The scaling factor depends on

the workspace conditions and the frequency with which the map is updated. For ex-

ample, if the map is updated very often, a higher value of c is chosen, so that there is
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(a) Obstacles Darker than the Background (b) Obstacles Brighter than the Background

(c) Combination of the Two Thresholds (d) Resultant Map

Figure 3.16: Grayscale Thresholding Process

28



www.manaraa.com



www.manaraa.com



www.manaraa.com

3.7 Memory Factor

If too many old maps are overlapped with the most recent map, the map becomes clut-

tered and too many obstacles at different points of time make the map confusing. Also,

maps that are too old do not give much indication of probable future locations of the

obstacles. To solve this problem, if an individual map is too old, it is discarded. A

memory factor determines when an individual map is discarded. The larger the mem-

ory factor is, the older an individual map can be and still be taken into account for

generating the final map. The memory factor is calculated using:

M =

⎧⎪⎪⎨
⎪⎪⎩

t0e−nc1 if n > 2

t0 if n ≤ 2
(3.2)

where M is the memory factor, t is the time since the oldest stitched image available,

n represents number of older stitched images available, and c1 is a scaling factor. If an

image is older than M , then it is forgotten. If the number of images available is less

than or equal to two, no image is forgotten. The memory factor is a function of both

number of images, n, and time since the oldest available image, t. For a particular t,

the memory factor reduces exponentially with number of images available. If a large

number of images are available, the memory factor is smaller, so that more images are

forgotten. If the number of images available is small, the memory factor becomes big-

ger, so that the older images are not forgotten. A maximum memory factor could be

set up to make sure that the maximum number of images considered is limited.

As an example, individual maps generated at times TN , TN−1, TN−2, where N is num-

ber of images, are shown in Figure 3.20. The resulting map is shown in Figure 3.21. In

this map, the red areas show the most recent positions of the obstacles. Medium-bright

yellow areas show next to the most recent positions, and the dark yellow areas show

the oldest positions of the obstacles. The overlapping areas between the older obstacle
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3.8 Performance Evaluation

Although this mapping technique is promising, there are some problems yet to be ad-

dressed. The background detection method described is based on the assumption that

the background area is larger than the total obstacle area, which may not always be

true. The thresholding values used for creating markers for the watershed algorithm

are also variable. However, the threshold values are fixed for a particular workspace in

a particular condition, and they can be calibrated. If there is an object that has the

same color as the background, it may go undetected by the segmentation algorithms.

Depending on the time of the day, the lighting condition changes in the workspace,

which makes adjustment necessary. The effect of various parameters on the mapping

performance are discussed in the following sections.

3.8.1 Effect of Memory Factor

Figure 3.22 shows the effect of memory factor on the obstacles detected as a percentage

of total workspace area. The total obstacle area, past obstacle areas, and the overlap

between past obstacle areas are shown. Obstacles occupy more area if the memory fac-

tor is bigger. In this example, when the memory factor is greater than TN−2, all three

individual maps are taken into account. The area occupied by obstacles is greater.

When the memory factor is less than TN−2 but greater than TN−1, the oldest of the

three individual maps is forgotten. In this case, both the total obstacle area and past

obstacle area are smaller. If the memory factor is less than TN−1, only the most recent

individual map is taken into account, the other two are forgotten. The total obstacle

area is the smallest in this case, and there is no past obstacle area shown in the map in

yellow. The effect of memory factor on the appearance of the map is shown in Figure

3.23.

As can be seen in (3.2), the memory factor depends on number of images available and

the scaling factor. The scaling factor is chosen based on how frequently the map up-
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Figure 3.25: Effect of Number of Past Maps and Scaling Factor on Final Map
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Figure 3.26: Absolute Intensity as a Function of Normalized Time
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3.8.3 Comparison of Segmentation Methods

To evaluate the effectiveness of the proposed method, they are compared against a

manually-generated map, drawn directly on top of the stitched images, rather than

the measurements of the actual obtacles. As such it provides a method to compare

segmentation algorithms against one another, but is only an approximation of their

absolute accuracy. The results differ based on the contrast between background and

foreground and different camera parameters such as exposure, brightness and contrast.

However, for a particular camera and a particular set of workspaces, trends are found

when the two segmentation methods are compared.

The workspaces used for the comparison of the two segmentation techniques are shown

in Figure 3.27. These workspaces vary in background color, workspace size, and the

color, shape and size of the obstacles. Segmented images resulting from grayscale thresh-

olding and watershed transformation are compared against the manually-generated im-

ages for all of these eight workspaces. Workspace 1 is shown in Figure 3.28, along with

the manually-generated image used for comparison and the segmentation results.

Figure 3.29 compares the percentage match of pixels with the manually-generated map

for the grayscale thresholding method and the watershed transformation for different

workspaces. Every pixel of the map is compared with the corresponding pixel of the

manually-generated map. The figure shows that in most cases the watershed trans-

formation algorithm yields a more accurate map than the grayscale thresholding al-

gorithm. Figure 3.30 compares percentage obstacle pixels missed, that is the percent-

age of obstacle pixels in the manual map detected as background in the actual map.It

shows that the grayscale thresholding results in higher percentage of missed obsta-

cles than the watershed transformation. Figure 3.31 compares falsely detected obsta-

cle pixels, that is the percentage of foreground pixels in the generated map that are

background pixels in the manually drawn map. It shows that the watershed transfor-
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(a) Workspace 1 (b) Workspace 2

(c) Workspace 3 (d) Workspace 4

(e) Workspace 5 (f) Workspace 6

(g) Workspace 7 (h) Workspace 8

Figure 3.27: Workspaces Used for Evaluating Segmentation Performance
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Figure 3.31: Percentage of Falsely Detected Obstacles in Different Workspaces

cessfully detect as much as 96% of the obstacle area, and the watershed transformation

method is more robust when it comes to successfully detecting obstacles.
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Chapter 4

MAPPING USING QR CODES

This chapter will introduce another method for mapping the crane workspace,

which is based on QR codes. The algorithm requires the knowledge of the

dimensions of the obstacles likely to appear in the map. These obstacles are

labeled with QR codes, and a database is created to store the information

of the known obstacles. The camera mounted on the crane trolley takes pic-

tures of the workspace. The QR codes in the pictures taken by the camera

are read, and a map is generated by matching the identified QR codes to

the database. Unless all the obstacles in the workspace are labeled with a

QR code, this mapping technique shows only a fraction of the total num-

ber of obstacles. The QR code-based map is combined with the previously

described machine-vision-based map to ensure that maximum number of

obstacles are shown in the map.

4.1 QR Code Overview

The Quick Response code (QR code) is a kind of two dimensional barcode. Barcodes

are used all over the world for encoding information of the items onto which they are

affixed. The QR code was first developed for the automotive industry in Japan [72].

Now, it is very popular worldwide because of its greater data storage capacity and

quick readability. The datatypes QR codes support include binary, numeric, alphanu-

meric and kanji. Figure 4.1 shows an example QR code, encoded with the C.R.A.W.LAB

web address (http://www.ucs.louisiana.edu/˜jev9637/).
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Figure 4.1: QR code for the URL of CRAWLAB

4.1.1 Encoding and Decoding

There are several standards for encoding data in QR codes. A QR code consists of

black dots, called modules, on a white background. These modules create a unique pat-

tern for the data encoded in the QR codes. For decoding, an imaging device, typically

a camera, and a processor are used. The imaging device reads the QR codes, and the

processor extracts the data from the pattern present on the QR codes [73]. The pro-

cessor first locates the position blocks, shown in Figure 4.2, at the corners of the QR

coded image. It also locates a fourth square, known as an alignment block, near the

other corner to correct distortions. Then, the small modules are converted to binary

numbers and validated with an error correcting code.

4.1.2 Storage

The storage capacity of a QR code depends on the encoded datatype, version, and

error correction level. The possible datatypes are numeric, alphanumeric, binary and

kanji. There are 40 available versions of QR codes. Version 1 is a 21x21 matrix, which

can store the lowest amount of data. With each higher version, four additional rows
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database and the number of undetected obstacles can be counted. The database file

should be updated whenever an object is added or removed from the workspace.

Figure 4.4 shows the key steps of mapping using QR codes. In order for this algorithm

to work, first a database of all the known obstacles is created. Each obstacle listed in

the database is labeled with a QR code, the position of which with respect to the ob-

stacle is listed in the database.

The latest stitched image of the workspace is taken as the input. All the QR codes in

the stitched image are decoded, and the data are recorded. The recorded data includes

a keyword for the obstacle each QR code is attached to and the position and orien-

tation of that QR code. Next, for each QR code found in the image, the database is

searched for the matching obstacle using the keyword. When a match is found, the di-

mensions of the obstacle and its relative position from the QR code is read from the

database and from the obstacle height, the conversion factor from the physical units to

pixels is calculated.

Next, the obstacle position and orientation is calculated from the QR code position

and orientation, and using the conversion factor, the data are converted into pixel units.

Finally, the obstacle is drawn on the map. The process continues until all the obstacles

labeled with QR codes read from the stitched image are drawn. Figure 4.5 shows an

example workspace, a complete map is shown in Figure 4.6.

4.2.1 Creating Obstacle Database

Since the mapping technique using QR codes works only for known obstacles, a database

is necessary for the algorithm, which is created in text format where obstacles with

their types and dimensions are listed. The position of each QR code relative to the ob-

stacle onto which it is affixed is also listed. Taking precise measurements of the obsta-

cles and putting them in correct order is imperative for the algorithm to work properly.
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Input stitched image

Read database file

Read QR data file

Search next keyword 
in the database 

Calculate conversion 
factor from obstacle 

height

Get dimensions for 
 matching keyword

Decode QR codes in the 
image and calculate 

position and angle of each  

Use converted dimensions and 
angle to draw obstacle top

Display 
map

Any 
other QR 
codes?

No Yes

Locate obstacle position 
and angle from QR code 

position and angle

Figure 4.4: Flow Chart of Mapping Algorithm Using QR code
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Figure 4.5: Workspace with QR Code Labeled Obstacles

Figure 4.6: Resultant Map of the Workspace

Every obstacle in the database file is assigned with a code, which is also encoded in

the QR code of the corresponding obstacle. This code is the keyword for a QR code
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Table 4.2: Data Entry System for Circular Obstacles

tank1 rx radius height circle
c1 6 11 7

to match with the database file. For example, the keywords for circular obstacles are

c1, c2, ...,cn, and for rectangular obstacles, they are r1, r2, ...,rn. The database is up-

dated with every new obstacle added to the workspace. For every obstacle, the data

is listed in the following order: obstacle type (circle/rectangle/polygon), obstacle code

(example: c1, r3, p2 etc.), and dimensions.

For circular obstacles, the dimensions listed in the database are the relative distance of

the QR code from the center, the radius, and the height of the circular obstacle. Since

rectangular obstacles are common, and the labeling and data entry is easier than that

of polygonal obstacles, they are treated separately. Moreover, polygons close to rect-

angular shape can be simplified as rectangles. For rectangular obstacles, the dimen-

sions listed are the relative distance of the QR code from the lower left vertex, and the

length, width, and height of the obstacle. In the case of polygonal obstacles, the num-

ber of sides of the polygon is included in the database. The position of each corner rel-

ative to the QR code center is listed in polar coordinate, followed by the height of the

obstacle. All dimensions are specified in inches.

An example database entry for circular obstacles is shown in Table 4.2. Here, tank1 is

a circular object, and c1 is the unique keyword for tank1. The QR code is placed at

a radial distance of 6 units from the center, perpendicular to the radius, and the left

side facing the center, as shown in Figure 4.7. The tank has a radius of 11 units, and a

height of 7 units.

An example data entry for rectangular obstacles is shown in Table 4.3. Here, machine1

is a rectangular object, and r1 is the keyword for machine1. The QR code center is
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Input stitched 
image

Detect QR code 
with ZBAR

Decode QR code 
with ZBAR

Write data in file

Calculate angle 
and center

Any other QR 
code? YesNo

Terminate 
program

Figure 4.10: Flow Chart of the QR code Decoding Process

Figure 4.11: Example Image to be Decoded

QR codes. The decoding results are shown in Table 4.5.

53



www.manaraa.com

Table 4.5: Result of the Decoded QR Codes from the Example Image

c1 237◦ 820 256
r1 189◦ 501 326

Figure 4.12: Minimum Enclosing Rectangle for finding the QR code center

In Table 4.5, c1 is the keyword encoded in the QR code on tank1. The QR code’s po-

sition is (820, 256) pixels, and it is at an angle of 237 degrees relative to the positive

X-axis. Similarly, r1 is the keyword encoded in the QR code on machine1 and the QR

code’s position is (501, 326) pixels, and it is at an angle of 189 degrees relative to the

positive X-axis.

4.2.4 Calculating the Center of QR Codes

For every QR code detected, a minimum rectangle enclosing the QR code is calculated,

as shown in Figure 4.12. The four vertices of the rectangle are averaged to find the ap-

proximate center of the QR code.

54



www.manaraa.com

4.2.5 Calculating the Angle of QR Codes

To calculate the QR code angle, the position blocks are first detected. The canny edge

detection algorithm [76] is applied to detect all the edges of the image containing the

QR code. Then, a contour finding algorithm is used to detect all the contours with hi-

erarchy in the image. The position markers contain five nested contours, as shown in

Figure 4.13. This distinguishes the position markers from the other modules of the QR

code.

After the three position markers have been identified from the number of nested con-

tours they contain, the relative position of them with respect to each other is deter-

mined, and the markers are named as the top, right, and bottom markers. This can be

done by using a triangle ABC shown in Figure 4.14, formed by connecting the center

of each of the three contours of the three position blocks. The vertex not involved in

the largest side is out-lying, and it can be named as the top marker. In this case, C is

the top marker. In order determine the right and the bottom marker from the remain-

ing two, the slope of the straight line AB they form, and the distance of AB from C is

calculated.

* if slope and distance are positive, A is BOTTOM and B is RIGHT

* if slope in negative and distance is positive, A is RIGHT and B is BOTTOM

* if slope in positive and distance is negative, A is RIGHT and B is BOTTOM

* if slope and distance are negative, A is BOTTOM and B is RIGHT

Once the top, right, and bottom markers are determined, the angle of the straight line

connecting the top and right marker with respect to horizontal is the angle of the QR

code with respect to horizontal.
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Vertex A:

xa,ya = xo + l cosθ, yo + l sinθ (4.2)

Vertex B:

xb,yb = xo +hcos(θ +φ), yo +hsin(θ +φ) (4.3)

Vertex D:

xd,yd = xo −w sinθ, yo +w cosθ (4.4)

where,

r2 = r2
x + r2

y (4.5)

ψ = tan−1(ry/rx) (4.6)

h2 = l2 + l2 (4.7)

and

φ = tan−1(w/l) (4.8)

Since in polygonal obstacles, the vertices are defined in polar coordinates relative to

the QR code center, once the position of the QR code Center C(xo,yo) and the QR

code angle θ with respect to positive horizontal axis are read from the QR code data,

the vertices can be calculated from the following formula:

(x,y)i = xo + ri cos(ψi + θ), yo + ri sin(ψi + θ) (4.9)

where ri is the distance of ith vertex from the QR code center, and ψi is the angle of

the vertex with respect to the horizontal axis.

After all the vertices are found for the rectangle or polygon, it can be drawn by con-

necting the vertices with straight lines. Figure 4.18 shows an example workspace, a
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Figure 4.18: Workspace with QR Code Labeled Obstacles

Figure 4.19: Resultant Map of the Workspace

and less bright with increasing height. The contrast and relative size between the top

and the base give a sense of height of the obstacles.
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Figure 4.20: Workspace Map with Height Information

4.3 Combination with Machine-Vision-Based Mapping

The proposed QR-code-based method can be combined with the pure machine vision

method introduced in Chapter III. A simple technique to combine these two maps is

by drawing the QR code map directly over the machine-vision-based map. An example

of this technique is shown in Figure 4.21, where the white areas behind the obstacles

represent the machine-vision-based map. In this example, the QR code attached on

the rectangular obstacle was slightly misplaced, so it shows slight discrepancy from the

machine-vision-based map.

4.4 Performance Evaluation of QR Code-Based Mapping Algorithm

The performance of the mapping algorithm using QR codes was tested in different

workspaces. Stitched images of these workspaces are shown in Figure 4.22. These

workspaces have different backgrounds and different obstacle positions and spacing.

The obstacles used for testing are of polygonal, rectangular, and circular shapes. The
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Figure 4.21: Workspace Map with Two Mapping Techniques Together

QR code maps are compared against manual maps drawn from the measurements of

the workspaces. The coordinate of each vertex of each obstacle and the center in case

of circular obstacles from an origin is measured, and the data are converted from inches

to pixels. Then, the converted data are used to manually draw the top face of the ob-

stacles.

Using this data, the total percentage of matched pixels, percentage of matched fore-

ground pixels, percentage of missed obstacle pixels, and the percentage of falsely de-

tected obstacle pixels are calculated. The percentage match plot shows what percent-

age of pixels of the manually-generated map match with the corresponding pixels of

the QR code-based map, and the percentage foreground match plot shows what per-

centage of foreground pixels of the manually-generated map match with the corre-

sponding pixels of the QR code-based map. These two plots indicate how good the

map represents the actual workspace. The percentage missed obstacle pixels plot shows
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(a) Workspace 1 (b) Workspace 2 (c) Workspace 3

(d) Workspace 4 (e) Workspace 5 (f) Workspace 6

(g) Workspace 7

Figure 4.22: Workspaces Used for Evaluating QR Code Mapping Performance

what percentage of foreground pixels in the manually-generated map are detected as

a part of the background in the QR code-based map. The percentage falsely detected

obstacles plot shows what percentage of background pixels in the manually-generated

map are detected as a part of the foreground in the QR code-based map. Figure 4.23

shows an example workspace the corresponding manually-generated map and QR code

map to be compared. Only the obstacles labeled with QR codes are considered for

comparison. Some part of workspaces 6 and 7 are masked, because they are part of the
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(a) Example Workspace (b) Manually Drawn Map

(c) Map Using QR Code

Figure 4.23: Example Images for Evaluation

crane, not the workspace. The stitched image are of different sizes due to individual

image resolution and stitching distortion differences. However, since the performance

is evaluated as a percentage of total image pixels and total foreground pixels, the size

variation doesn’t affect the evaluation.

Figure 4.24 shows the percentage pixel match between the manually-generated map

from the measurements of the workspace and the maps generated using QR codes. The

results show as high as a 93% match between the manually-generated map and the QR

code-based map. Figure 4.25 shows the percentage match of obstacle pixels of the QR
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viation of the stitched image from the actual workspaces. Due to the distortion, the

center and angle detection of the QR codes result in some errors, affecting the accuracy

of the map.

4.5 Comparison of Mapping Techniques

The pure machine vision map, the QR code-based map, and a combination of these

two maps are compared against the maps drawn from the physical measurements of

the obstacles for the same workspaces shown in Figure 4.22. Obstacles both with and

without QR codes are Considered for comparison in these workspaces. The percent-

age pixel match between actual map and manually-generated map is shown in Figure

4.28. The percentage match is close for the pure vision map, QR code-based map, and

combination map in most cases, and there is no particular trend. However, Figure 4.29

shows that the percentage foreground match is higher for the combination map than

the individual pure machine vision map and QR code map. The pure machine vision

map shows slightly better match than the QR code map. The reason for that is that

the obstacles without QR codes are not displayed in the QR code-based map, there-

fore only part of the actual workspace is shown in this map. This is also reflected on

Figure 4.30 which compares the percentage obstacle pixels missed for the three kinds

of map. This figure shows that the QR code-based map misses the most obstacle pix-

els. However, the previous section shows that the percentage missed pixels is reduced

if the obstacles not labeled with QR codes are not considered for comparison. This fig-

ure also shows that the combination map misses fewer pixels that belong to an obstacle

than the pure machine vision map and QR code-based map individually, which means

the combination map is more reliable. However, Figure 4.31 shows that the combina-

tion map detects highest number of pixels as part of an obstacle where in reality they

are not. It also shows that the pure vision map has the tendency of falsely detecting

pixels as obstacles than the QR code-based map.
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Figure 4.31: Percentage of Falsely Detected Obstacles in Generated Maps

4.6 Chapter Conclusion

In this chapter, an algorithm for mapping crane workspace using QR codes was intro-

duced. All the steps of the mapping algorithm, including labeling of the obstacles with

QR codes, creating database, encoding and decoding of the QR codes, angle and cen-

ter calculation, and drawing the map were explained. The height of the obstacles was

included in the drawn map. Then, the resultant map was integrated with the machine-

vision-based map. The mapping performance of the QR code-based map was compared

with the machine-vision-based map and the combination map. The efficiency of the

QR code-based mapping algorithm was found to be as high as 93%. However, precise

positioning of the QR codes and accurate measurements of the dimensions of the ob-

stacles are important for optimum performance. If the QR codes are precisely posi-

tioned and clearly readable, and the measurements are accurate, the QR code-based

mapping algorithm is preferable. However, it only works with QR code-labeled obsta-

cles of known dimensions and therefore should be accompanied by the machine-vision-

based mapping algorithm for a complete map of the crane workspace, unless all the
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obstacles in the workspaces are labeled with a QR code.
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Chapter 5

CONCLUSION

5.1 Summary and Contributions

In this thesis, first a novel approach of mapping the workspace of overhead cranes us-

ing pictures from a single camera was presented. Different image processing techniques

used to accomplish the mapping, including image stitching, template matching, im-

ages segmentation, histogram calculation were discussed. The idea of displaying the

older maps in the current map to show the previous obstacle positions as an indication

of the likelihood of finding the obstacle at those positions again in the future was in-

troduced. A memory factor was also introduced, which determines when to forget an

old map. Two segmentation algorithms for obstacle detection, simple grayscale thresh-

olding and watershed transform were compared. While the watershed transformation

is more successful in detecting obstacles, it is also computationally expensive and the

threshold values required to create the marker are difficult to determine.

In addition, a method of crane workspace mapping using QR codes was presented.

The method for creating database, the labeling of the obstacles with QR codes, the

encoding and decoding of the QR codes and the drawing of the obstacles on the map

were discussed. The height information was included with the map to give it a 3D ap-

pearance, and the combination of the two mapping techniques were discussed. Then

the performance of the mapping algorithm using QR codes was compared with the

machine-vision-based map for different workspaces using a manually-generated map.

Image segmentation methods have applications in a number of different fields, such as
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object detection and tracking. However, it has not been used in mapping crane workspaces

before. This thesis shows the enormous potential of image segmentation methods to be

used in mapping workspaces. Although image stitching techniques have been used be-

fore in aerial mapping, this is the first time the possibility of using image stitching to-

gether with image segmentation to formulate a crane workspace mapping algorithm has

been explored.

Although QR codes were initially invented for storing product information, other appli-

cations of them have been introduced, such as using them as landmarks for localization

of robots. This thesis presents an unique idea of using QR codes for mapping crane

workspaces. The results obtained from this thesis demonstrate that QR codes have the

potential of being widely used in mapping crane workspaces.

5.2 Future Work

The work in this thesis enables some advanced crane workspace mapping. More ad-

vanced image segmentation algorithms can be used to improve the mapping perfor-

mance. Significant computation power can be saved by replacing the stitching with

augmenting individual segmented images side-to-side. Instead of reading the QR codes

from the stitched image, they could be read directly by the camera, and the obstacles

could be drawn by locating the QR code in the camera coordinate combined with the

position of the camera itself in the world coordinate.

The obstacle positions obtained from the map can be used for automatic obstacle avoid-

ance by creating virtual boundaries around the obstacles, which in turn will make pos-

sible partial or fully-automated crane operation. This map can also be used to opti-

mize the path for the crane, which will increase productivity by reducing travel dis-

tance and time.
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ABSTRACT

Cranes are used worldwide for transportation and material handling in a variety of in-

dustries and facilities, including manufacturing industries, shipyards, and warehouses.

Safety and efficiency in crane operations are a concern, since these issues are closely

related to productivity. One of the reasons for crane-related accidents is mistakes by

the operator, some of which can be attributed to the limitations of the operator?s field

of view, depth perception, and knowledge of the workspace. These limitations are ex-

acerbated by the dynamic environment of the workspace. One possible solution to

these problems could be aiding the operator with a dynamic map of the workspace

that shows the position of obstacles within it. In this thesis, two methods for mapping

the crane workspace in near-realtime using computer vision are introduced. Several

computer vision algorithms are integrated, and new techniques are introduced to gen-

erate a machine-vision-based map. A QR code-based mapping algorithm is also formu-

lated. The algorithms can work independently. However, they can also be integrated,

and the results show that a combination of these two mapping techniques produce the

best results. The success of the pure machine-vision-based map and the QR code-based

map depend on successful segmentation of color regions and detection of the QR codes,

respectively. The combination of the two algorithms is a novel approach that ensures

maximum obstacle detection. The algorithms produce a workspace map that can help

the crane operator drive the crane more safely and efficiently.
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